Evolución y gestión de las mutaciones de resistencia en los GIST

10 Feb

 

 

 

 

 

Evolución y gestión de las  mutaciones de resistencia en los GIST

 

Una entrevista de  la asociación de pacientes de GIST: http://www.gistsupport.org/ a “Suzanne George, MD es Profesora Asistente de Medicina en la Escuela de Medicina de Harvard, y directora clínica del Centro de Oncología del Sarcoma y del Hueso en el  Instituto de Cáncer Dana-Farber, de Boston. En su calidad de médico oncólogo,  es parte de un equipo multidisciplinar que trata y proporciona consulta a pacientes con sarcoma de todo el área de Nueva Inglaterra, así como en el resto de los Estados Unidos y en diferentes países donde se requiere su atención.  Ella es también muy activa en la investigación clínica -. desarrolla y ejecuta ensayos clínicos centrados en nuevas vías de tratamiento para GIST y otros sarcomas de tejidos blandos. ” 

 

1. ¿Qué papel tienen las mutaciones en las proteínas KIT y PDGFR  que tiene GIST?

KIT y PDGFR pertenecen a la familia de proteínas llamadas receptores de tirosina quinasas de Clase III, que actúan como un interruptor celular “On / Off” , promueven el crecimiento y la supervivencia celular cuando están en estado “on”. En condiciones normales, esta actividad está estrechamente regulada, de modo que KIT y PDGFR sólo están activos cuando se unen a moléculas específicas de señalización (ligandos), tales como hormonas o factores de crecimiento. Sin embargo, las proteínas KIT o PDGFRA que se encuentran en los GIST estan a menudo defectuosas, contienen mutaciones que favorecen el estado “encendido/ ON” y dan lugar a un crecimiento celular desregulado y forman tumores.

2. ¿Cómo afectan estas mutaciones a los tratamientos del GIST?

Los fármacos inhibidores de quinasa estándar para el GIST (imatinib, sunitinib, regorafenib) se unen a las proteínas KIT y PDGFR de manera que estabilizan el estado “apagado/OF”, silenciando las señales de crecimiento anormal. Sin embargo, la investigación ha mostrado que unas pocas mutaciones específicas pueden alterar la estructura de KIT o PDGFR en formas que son incompatibles con la unión de un determinado fármaco . Cuando se deteriora la capacidad del fármaco para unirse a su proteína diana, procede de señalización sin control y el crecimiento del tumor se produce.
Tales “mutaciones de resistencia” son poco comunes en los GIST primarios, es decir en los GIST sin tratamiento previo, excepto para la mutación primaria, PDGFRa D842V, que confiere en particular la resistencia a la norma de los inhibidores de la quinasa. En la mayoría de los casos, sin embargo, las mutaciones de resistencia surgen sólo después de una exposición prolongada de fármacos. Algunas mutaciones de resistencia pueden ser abordadas por el cambio a un inhibidor de quinasa diferente, pero las mutaciones en una región crítica de la estructura de la proteína KIT y PDGFR llamado el bucle de activación, han demostrado un alto grado de resistencia a todos los tratamientos con GIST hasta la fecha.

3. ¿Cuál es el bucle de activación? ¿Por qué las mutaciones localizadas en el bucle de activación  estan en el ” exón 17″ para KIT y en el “exón 18” para PDGFRa, y cuál es su importancia clínica?

El ADN de un gen es muy largo, y lugares específicos a lo largo de ese tramo se indican mediante un sistema de numeración llamados “exones”. Los exones son análogos a los marcadores de los Km. a lo largo de una carretera que le dice dónde se encuentra. Indican si se  trata de un  segmento del gen o su parte correspondiente de la proteína. Los componentes estructurales individuales de una proteína se correlacionan con segmentos específicos de exón (Figura 1).

 

Figura 1: Las arquitecturas moleculares de la proteína KIT y el gen KIT. Un gen se divide en segmentos funcionales llamados exones. Los componentes estructurales individuales de una proteína se correlacionan con segmentos de exón específicos. Exon 17 codifica el bucle A de activación en el dominio quinasa de KIT. El bucle de activación es una característica estructural que guía el “on / off” del estado de la quinasa.

Instrucciones para el bucle A –  zona flexible en proteínas quinasas que rige su “on / off” – se codifican a través del exón 17 de KIT y el exón 18 del PDGFRa. Cuando el bucle A se cambia a “encendido/on” (conformación abierta) el resultado es una quinasa activa. Cuando el bucle A se conmuta de “apagado/of” (conformación cerrada) la quinasa es incapaz de transmitir señales  y permanece en un estado inactivo.

El estado estructural de la un  bucle es crítico para la unión de inhibidores de quinasa tales como imatinib y sunitinib, y las mutaciones de distorsión que puede causar resistencia a los medicamentos.Las mutaciones de resistencia en el exón 17 KIT se han identificado en las posiciones 816, 820, 822 y 823. En el exon 18 de PDGFRa la mutación D842V, es de estructura análoga a la mutación D816V en KIT.

4. Los fármacos que inhiben KIT y PDGFR se han clasificado como inhibidores  quinasa de tipo 1 o de tipo 2  en función de sus características de unión. ¿Cómo afectan  las mutaciones en KIT exón 17 y el PDGFRa D842  a un inhibidor tipo 1 frente a   inhibidores  de tipo 2?

Los  inhibidores de la quinasa  tipo 2 como imatinib   encajan perfectamente en “los bolsillos de unión” que se crean cuando un bucle adopta una conformación cerrada (Figura 2). Sin embargo, son incapaces de unirse a los mutantes de KIT con un bucle en una conformación abierta. Las mutaciones primarias de GIST  como las que se producen  en el exón 11 de KIT, tienen una formación cerrada. Por lo tanto, los inhibidores de tipo 2 pueden unirse eficazmente a KIT e inhibir el oncogén activado por el exón 11 . En contraste, las mutaciones en el exón 17/18 estabilizan el un bucle en una conformación abierta, que obstruye la unión de los inhibidores Tipo 2  (Figura 3A).

Los inhibidores Tipo 1  son más potentemente y son capaces de unirse cuando el bucle A se encuentra en la conformación abierta (figura 3B). El fármaco en investigación BLU-285 es un ejemplo de un selectivo inhibidor de la quinasa de tipo 1 que se une de forma potente  a las mutaciones activantes de KIT y PDGFR en  exón 17/18.

Figura 2:

 

 

La figura 2 muestra a imatinib (amarillo) KIT unido con la  bucle A de KIT en una conformación cerrada (púrpura). En esta conformación, el imatinib encaja perfectamente en el bolsillo de unión del KIT. En las mutaciones exon 17/18 en KIT o PDGFR, estabilizan el bucle A en una conformación abierta (verde), que obstruye la unión de imatinib y otros inhibidores tipo 2.

 

Figura 3:

 

 

A. B

Figura 3. El panel A muestra una vista más cercana del choque que se produce entre el imatinib inhibidor  tipo 2 y la quinasa cuando bucle A se encuentra en la conformación abierta (verde). Este choque impide la efectiva unión de imatinib a la quinasa cuando el bucle A está en conformación abierta. En el panel B muestra la unión de un inhibidor de quinasa de tipo 1 . En este caso se evita enfrentamientos del blucle A con los inhibidores tipo 1 en la conformación cerrada (púrpura) y se produce una  unión eficaz.

5. ¿Qué  comunes son las mutaciones KIT exón 17 y el PDGFRa D842V ? ¿El cambio de frecuencia en el transcurso de la enfermedad?

La mutaciones en KIT exón 17  son raras en el momento del diagnóstico, apareciendo en sólo en el 1% de los GIST sin tratamiento previo. Sin embargo, el 23% de los pacientes que han progresado con imatinib y más del 90% de los que han progresado tanto imatinib y sunitinib tienen mutaciones en el exón 17 de KIT (Figura 4). Estas mutaciones secundarias en el KIT exón 17  confieren resistencia tanto a imatinib como a sunitinib . En GIST avanzado, aproximadamente el 5% de los tumores tienen una mutación D842V en PDGFRa. D842V PDGFRa  es una mutación primaria y no se encuentra  como una causa de la resistencia secundaria a las TKIs actuales usadas ​​para tratar el GIST.

Figura 4:

 

 

 

6. ¿Cómo puedo determinar si mi GIST contiene mutaciones en KIT o PDGFR?

Las pruebas de mutación para GIST están ampliamente disponibles.. La prueba se hace a menudo en busca de mutaciones iniciales en KIT . Si no se detectan mutaciones en KIT, entonces se hacen las pruebas para las mutaciones en PDGFRa. Hable con su médico para obtener más información acerca de las pruebas de mutación en GIST. Es importante señalar que las pruebas actuales son buenas en la identificación de mutaciones primarias en GIST. Debido a que las mutaciones secundarias pueden variar de un tumor a otro dentro de una misma persona, las pruebas de rutina de mutación pueden no ser capaces de identificar con precisión las mutaciones de resistencia en cada persona, incluyendo en el exón 17.

7. ¿Cuáles son las recomendaciones actuales para las pruebas de mutación? ¿De qué manera los resultados informan las decisiones de tratamiento?

De acuerdo con las directrices de la Red Nacional de Atención Integral de los Sarcoma de Tejido Blando (NCCN-EE.UU.) y de la ESMO-U.E. las pruebas de mutaciones en KIT y PDGFR son muy recomendable como parte de la rutina para los pacientes recién diagnosticados. La prueba debe realizarse sobre todo cuando se prevé el tratamiento con inhibidores de la quinasa, ya que la presencia o ausencia de mutaciones en regiones específicas de los genes  KIT o genes PDGFRa pueden predecir si  un paciente responderá a los tratamientos. Los resultados podrán informar de las siguientes decisiones de tratamiento:

  • Saber si usted tiene una mutación primaria en el exón 9 de KIT frente a exón  11 de KIT  lo que puede ayudar a su médico a seleccionar una dosis apropiada de imatinib, ya que los pacientes con mutaciones exón 9 de KIT  son más propensos a responder a 800 mg de imatinib que a la dosis estándar de 400 mg.
  • Saber si usted tiene una mutación PDGFRa puede ayudar a su médico a tomar decisiones sobre la terapia, ya que los tumores con la mutación D842V PDGFRa no responden al imatinib, mientras que la mayoría de otras mutaciones en el gen PDGFR se asocian con una respuesta a imatinib.

8. ¿El ADN  tumoral circulante puede ser utilizado para encontrar mutaciones de resistencia adquirida/ Biopsia líquida?

Análisis de ADN tumoral circulante/ biopsia líquida, o ctDNA, es una prueba exploratoria estudiada en GIST y en otros tipos de cáncer. Actualmente no está disponible  de rutina.

Con el tiempo, el ADN de las células tumorales se derrama en el torrente sanguíneo. Después de realizar una simple extracción de sangre, este ADN circulante se puede analizar o “secuenciar” para identificar si existen alteraciones moleculares en las células cancerosas. En contraste con una biopsia, que sólo refleja los cambios moleculares que se han producido en la región de la biopsia, el ctDNA puede revelar cambios que han ocurrido en múltiples sitios tumorales. (Las mutaciones no son uniformes y pueden variar de un tumor a otro dentro de un mismo individuo.) La esperanza es que este enfoque proporcionará una imagen acumulada del cáncer del paciente y en última instancia, orientar la selección de la mejor opción terapéutica.

La realización de una extracción de sangre antes y después del tratamiento con las  drogas puede informar al médico de los cambios moleculares que se han producido en el transcurso de la terapia. En particular, si el tumor de un paciente ya no está respondiendo a un determinado fármaco, las mutaciones identificadas recientemente en el ctDNA pueden ayudar a explicar el fracaso terapéutico.En el futuro, la supervisión del estado de ctDNA puede permitir a los médicos  seleccionar o cambiar las intervenciones terapéuticas basadas en el estado molecular del tumor del paciente en tiempo real.Todavía se está desarrollando la tecnología para identificar la mejor manera de determinar ctDNA en pacientes con GIST, debido a esto, ctDNA no está disponible habitualmente, pero se incluye en muchos de los nuevos ensayos de investigación para GIST.

9. ¿Cuáles son las posibles estrategias para el tratamiento de GIST resistente que contiene  mutaciones en  KIT exón 17 o PDGFR D842V ?

De las terapias aprobadas actualmente para GIST, regorafenib es el único agente que ha demostrado cierta eficacia contra mutaciones  KIT exón 17. En la práctica estándar de tratamiento, regorafenib normalmente se recomienda después de la progresión de imatinib y sunitinib, independiente del genotipo del tumor.

Hay varios estudios en desarrollo con el objetivo de tratar a los pacientes con GIST en progresión despues de la terapia estándar (imatinib, sunitinib, y regorafenib). Muchas personas en esta situación de hecho tendrán KIT mutaciones en el exón 17 , además de la mutación primaria de KIT  y probablemente tendrán otras mutaciones también resistentes. La mayoría de los ensayos clínicos para los pacientes con GIST en esta situación se puede encontrar en clinicaltrials.gov.

BLU-285 es una pequeña molécula que se está desarrollando con actividad muy específica contra ambas mutaciones exón 17 de KIT  y mutaciones D842V PDGFRa. Este compuesto está en estudio por  primera vez en seres humanos, el ensayo clínico está en varios centros en los EE.UU., así como en Europa. (Ver clinicaltrials.gov Identificador:. NCT02508532).

Este compuesto es el único altamente específico para estas mutaciones, que son resistentes a otras terapias. Nuevos compuestos adicionales se están desarrollando para GIST resistentes:  PLX9486, otra molécula pequeña, con amplia actividad contra mutaciones de KIT primarias y secundarias en GIST.  PLX9486 en GIST no está actualmente reclutando participantes. (Más información se puede encontrar en clinicaltrials.gov Identificador: NCT02401815.). DCC-2618 es otro nuevo compuesto en estudio para GIST avanzado tras el fracaso de al menos en imatinib. Este compuesto inhibe múltiples mutaciones de KIT primarias y secundarias en GIST. (Más información del  ensayo de DCC-2618 se puede encontrar en clinicaltrials.gov identificador NCT02571036.)

mas información sobre estos ensayos:  https://colectivogist.wordpress.com/2015/12/09/los-ultimos-ensayos-clinicos-para-gist/

 

Crenolanib es un inhibidor muy potente de mutaciones D842V PDGFRa que también está siendo evaluado en GIST avanzado. El primer ensayo utilizando crenolanib en pacientes con GIST con esta mutación única está actualmente cerrado, y los resultados detallados aún no se han publicado. (Más información está disponible en clinicaltrials.gov Identificador: NCT01243346).

Es importante hablar con su médico al considerar la participación en ensayos clínicos. Hay varios nuevos compuestos y combinaciones de compuestos en desarrollo para pacientes con GIST, y las opciones disponibles para la participación en el ensayo clínico siempre se están actualizando.

 

texto original.

http://www.gistsupport.org/ask-the-professional/resistance-mutations-in-gist.php

 

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: